
WHAT KIND OF UNCERTAINTY IS THAT? USING PERSONAL
PROBABILITY FOR EXPRESSING ONE’S THINKING ABOUT

LOGICAL AND MATHEMATICAL PROPOSITIONS*

What is essential for the future development of probability consider-
ations, as for the development of science in general, is that trained
minds play upon its problems freely and that those engaged in discuss-
ing them illustrate in their own procedure the characteristic temper of
scientific inquiry—to claim no infallibility and to exempt no proposed
solution of a problem from intense criticism. Such a policy has borne
precious fruit in the past, and it is reasonable to expect that it will
continue to do so.
—Ernest Nagel, Principles of the Theory of Probability, Concluding Remarks1

Try to use probability to formalize your uncertainty about
logical or mathematical assertions. What is the challenge?

Concerning the normative theory of personal probability, in a
frank presentation titled Difficulties in the theory of personal probability,2

L. J. Savage writes,

The analysis should be careful not to prove too much; for some depar-
tures from theory are inevitable, and some even laudable. For example,
a person required to risk money on a remote digit of p would, in
order to comply fully with the theory, have to compute that digit,
though this would really be wasteful if the cost of computation were
more than the prize involved. For the postulates of the theory imply
that you should behave in accordance with the logical implication of
all that you know. Is it possible to improve the theory in this respect,
making allowance within it for the cost of thinking, or would that

*We thank Jessi Cisewski and Rafael Stern for their helpful comments with prior
drafts of this paper.

1 Ernest Nagel, Principles of the Theory of Probability (Chicago: University Press, 1939),
pp. 76–77.

2 This text is taken from a draft of Leonard J. Savage’s manuscript, Difficulties in the
theory of personal probability, dated April 1, 1967. Savage gave one of us ( JBK) this draft
while both were members of the Statistics faculty at Yale University. This text agrees
with the quotation on p. 311 of Ian Hacking, “Slightly More Realistic Personal Proba-
bility,” Philosophy of Science, xxxiv, 4 (December 1967): 311–25. In the published ver-
sion, Savage, “Difficulties in the Theory of Personal Probability,” Philosophy of Science,
xxxiv, 4 (December 1967): 305–10, this text appears (p. 308) with printing errors,
which are duplicated also in the version appearing in The Writings of Leonard Jimmie
Savage: A Memorial Selection (Washington, DC: American Statistical Association and
the Institute of Mathematical Statistics, 1981), p. 511.
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entail paradox, as I am inclined to believe but unable to demon-
strate? If the remedy is not in changing the theory but rather in
the way in which we are to attempt to use it, clarification is still to
be desired.

But why does Savage assert that “a person required to risk money
on a remote digit of p would, in order to comply fully with the
theory, have to compute that digit”? His short answer is that the
postulates of the theory of personal probability “imply that you
should behave in accordance with the logical implication of all that
you know.”

In this essay we discuss three strategies for addressing Savage’s
challenge:

(1) Adapt I. J. Good’s3 idea to use a Statistican’s Stooge in order to
change the object of uncertainty for the agent. The Stooge replaces
the problematic constant p by a nonproblematic random vari-
able q that the Stooge knows is co-extensive with p. From the
perspective of the Statistician, the theory of personal probability
affords nonproblematic probability judgments about q. Viewed
from the perspective of the Stooge, the Statistician ’s nonproblem-
atic uncertainty about q expresses her/his problematic uncer-
tainty about p. But how does the Statistician understand the
random variable q so that, without violating the Total Evidence
requirement, her/his uncertainty about p is related to her/his
uncertainty about q? Total Evidence obliges the rational agent to
formulate personal probabilities relative to a space of possibility
consistent with all her/his evidence.

(2) Adapt the requirements for “what you know” to a less than logically
omniscient agent. One way to do this is to change the closure con-
ditions for what probabilistic assessments rationality demands of a
coherent agent. Hacking4 signals this idea; Garber5 and Gaifman6

provide variants of this strategy, as does de Finetti7 with his theory
of coherence, which we illustrate below in section ii. Then, consonant
with Savage’s challenge, the agent’s uncertainty about the digits of
p is no different in kind than the agent’s uncertainty about the

3 I. J. Good, “Twenty-seven Principles of Rationality (#679)” (1971), in Good Thinking:
The Foundations of Probability and Its Applications (Minneapolis: Minnesota UP, 1983),
pp. 15–19.

4 Hacking, op. cit.
5 Daniel Garber, “Old Evidence and Logical Omniscience in Bayesian Confirma-

tion Theory,” in John Earman, ed., Testing Scientific Theories (Minneapolis: Minnesota
UP, 1983), pp. 99–131.

6 Haim Gaifman, “Reasoning with Limited Resources and Assigning Probabilities
to Arithmetical Statements,” Synthese, cxl, 1/2 (May 2004): 97–119.

7 Bruno de Finetti, Theory of Probability, vol. 1 (Chichester, UK: Wiley, 1974).
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digits of any other mathematical constant. But how to formalize
the concept of possibility for such a boundedly rational agent?
What is the normative theory of probability for an agent with
bounded rationality?

(3) Modify de Finetti’s criterion of coherence, which is a dichotomous
distinction between coherent and incoherent judgments of personal
probability, to accommodate degrees of incoherence.8 Thus, as Savage’s
comment suggests, the agent’s judgment about the digits of p is
represented by an incoherent probability assessment. But the modi-
fied theory allows for reasoning with incoherent judgments and
provides the agent with guidance how to use, for example, ordinary
calculations to reduce her/his degree of incoherent uncertainty
about the digits of p.

Contemporary probability theory, in particular the mathematical
theory of personal probability, relies on a mathematical device, a
measure space <W, B, P>, which embeds mathematical and logical
structural assumptions. We begin our discussion of these three strate-
gies for addressing Savage’s challenge by relating them to the three
components of a measure space. Following de Finetti’s convention,
hereafter, we refer to the reasonable person whose uncertainty about
mathematical and logical propositions is the subject of Savage’s chal-
lenge with the pronoun, “YOU.”

The first component of a measure space, W 5 fwi : i Î Ig is a par-
tition of YOUR space of serious possibilities, indexed by a set I. The
wi are called states. This attribution as so-called “states” does not
require special metaphysical features for the elements wi of the par-
tition. These states need not be atomic in an absolute sense. Upon
further reflection of YOUR opinions, YOU might refine the space,
for example, by using a finer partition W′ 5 fw′j : j Î Jg where each
wi Í W′. YOU might need to refine W when considering, for exam-
ple, a new random quantity that is not defined with respect to W.
With respect to Savage’s challenge, the problems for YOU in formu-
lating W include, for example, that you are unsure whether YOU
have succeeded identifying a partition: YOU are unsure whether dif-
ferent elements of W are disjoint and whether their union exhausts
all the possibilities YOU judge are serious.

B is a Boolean (sigma) field of subsets of W. The elements of B
are the abstract events over which YOUR uncertainty is to be rep-
resented with a probability function. As we illustrate, below in

8Mark J. Schervish, Teddy Seidenfeld, and Joseph B. Kadane, “Measures of Inco-
herence: How Not to Gamble If You Must, with Discussion,” In J. M. Bernardo et al.,
eds., Bayesian Statistics 7 (New York: Oxford, 2003), pp. 385–401.
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section ii, strategy (2) for responding to Savage’s challenge is to
relax the conditions that B is as large as a field of sets. That creates
some elbow room for having uncertainty about what is otherwise
incorporated as part of the mathematical background assumptions
of a measure space.

P is a (countably additive) probability over B used to represent
YOUR uncertainty. We express Savage’s challenge to YOU in rep-
resenting your uncertainty about logical/mathematical constants as
follows. In addition to the events that constitute the elements of B ,
the received theory of mathematical probability introduces a class c
of (possibly bounded) random variables X as (B -measurable) real-
valued functions from W to Â. Denote by EP[X ] the P-expected value
of the random variable X. Let IG be an indicator function for an
event G. That is,

IG(w) 5 1 if w ÎG and IG(w) 5 0 if w ÎGc.

Then EP[IG] 5 P(G). Thus, in the received theory, probability is an
instance of mathematical expectation. But in the received theory of
personal probability, p is a constant variable. It takes the same value
in each state : p(w) 5 p. So, EP[p] 5 p. YOU are required to know p.
However, under strategy (3) (as explained in section iii), in response
to Savage’s challenge YOU use an incoherent expectation function in
order to model YOUR uncertainty about mathematical propositions.

Reflect on Savage’s challenge in some detail. Let Xp6 be the vari-
able whose value is the sixth decimal digit of p. Here, we emphasize
the point that YOUR uncertainty about the decimal representation
of p may occur without having to consider a “remote” digit. In an
ordinary measure space Xp6 is the constant 2, independent of w,
because p is a constant whose value is independent of the elements
of W. In an ordinary measure space, with probability 1 the event
“Xp6 5 2” obtains, since as a mathematical result, it obtains in each
state w. Thus, in any ordinary measure space, there is no elbow
room for a nonextreme probability about Xp6 or an expectation
other than 2 for its value. Savage’s admonition applies:

For the postulates of the theory imply that you should behave in accor-
dance with the logical implication of all that you know.

The construction of an ordinary measure space requires that you
know what constant p is. That fact is part of the mathematical knowl-
edge taken as background also in order to formulate probability values
in a measure space, as we illustrate, next.

Example 1. Here is an illustration of the use of the mathematical
background knowledge for a measure space for giving probability
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values. Consider a problem in probability that relies on three familiar
bits of knowledge from high-school geometry.

The area of a circle with radius r equals pr 2.
The area of a square is the square of the length of its side.
The Pythagorean Theorem: Given a right triangle, with side lengths

a and b and hypotenuse length c, then a2 1 b2 5 c2.

Let W be the set of points interior to a circle C with radius r. A point
from W is chosen at random, with a uniform probability: equal prob-
ability for congruent subsets of C. Let B be the algebra of geometric
subsets of C generated by ruler-and-compass constructions. That is,
YOUR personal probability P is uniform over these geometric sub-
sets W: congruent regions that belong to B have equal probability.
YOU understand that YOUR probability that the random point is
contained in a region S (for a region S that is an element of B ) is
the ratio of the area(S) to the area(C). YOU are aware that YOUR
probability of the event “The random point is in S” is the fraction
area(S)/pr 2.

Let S be a square inscribed inside the circle C. (See Figure 1.)
Then by the Pythagorean Theorem and the rule for the area of a
square, area(S) 5 2r 2. So, YOU are aware that YOUR probability
that the random point is in the square S is 2/p. Suppose YOU are
aware that the first five decimal digits in the expansion of p are
3.14159. But YOU cannot identify the sixth decimal digit of p. Using
the familiar long-division algorithm, then you are unable to calcu-
late precisely YOUR personal probability (2/p) beyond the first four
digits (0.6366) that the random point is in S. YOU know that the
fifth digit is either 1 or 2. But, for instance, then YOU are unable
to answer whether a bet on the random point is in S at odds of
.63662:.36338 is favorable, fair, or unfavorable for YOU.àExample

Thus, the challenge Savage poses affects both the numerical
values that YOU can identify for YOUR (coherent) probability assess-
ments, as well as the random quantities to which YOU can assign a

Figure 1
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coherent probability assessment.9 With strategy (1), next we illus-
trate how to convert this “bug” into a “feature” that opens the
door to using commonplace numerical methods as a response to
Savage’s challenge.

i. strategy (1)

We extend Example 1 to illustrate strategy (1): Loosen the grip
of the Total Evidence Principle. Use a Statistician’s Stooge to replace
the original uncertain quantity Xp6 with a different one, q, that
the Stooge knows (but YOU do not know) is coextensive with
Xp6. Then YOU may hold nonextreme but coherent probabilities
about the substitute variable q. In this way, familiar numerical
methods, including Monte Carlo methods, permit YOU to learn
about Xp6 by shifting the failure of the Total Evidence principle
to the Stooge.

Example 1 (continued). As an instance of I. J. Good’s Statistician’s
Stooge, YOUR assistant, the Stooge, creates an elementary statistical
estimation problem for the quantity 2/p using iid repeated draws
from the uniform distribution on a circle C. The Stooge chooses C
to be the circle with center at the origin (0, 0) and radius r 5 Ö2.
Then the inscribed square S has corners with coordinates (±1, ±1).
Let Xi 5 (Xi1, Xi 2) (i 5 1, …, n) be n random points drawn by the
Stooge using the uniform distribution on C. After each draw the
Stooge determines whether or not Xi Î S, that is, whether or not
both inequalities obtain: −1 £ X ij £ 11 ( j 5 1, 2), which involves
examining only the first significant digit of Xij .

Now, the Stooge tells YOU whether event Y occurs on the i th trial,
Yi 5 1, if and only if Xi Î S for a region S. But all the Stooge tells

9 Example 1 opens the door also to a discussion of higher-order probabilities. YOU
might try to assign a second-order personal probability distribution P* to the quantity
2/p in order to represent the added higher-order uncertainty you have in YOUR
first-order uncertainty P that the random point is in the region S. Higher-order proba-
bility is a topic beyond the focus of this essay. Here, we express our agreement with the
Savage-Woodbury rejoinder—Savage, The Foundations of Statistics, 2nd ed. (New York:
Dover, 1954/1972), p. 58. That rejoinder questions whether such a higher-order per-
sonal probability has operational content. The Savage-Woodbury response establishes
that P* provides YOU with a resolution of your first-order uncertainty: Use P* to
create an expected value for 2/p, just as you would use personal probability to deter-
mine an expected value for any random quantity. Then this expected value is your
first-order expected value for 2/p, and YOU have no added uncertainty about your
(first-order) probability that the random point is in S. Then there is no residual higher-
order uncertainty.

Example 1 also opens the door to upper and lower previsions that govern one-sided
gambles. We consider this in connection with de Finetti’s Fundamental Theorem of Previ-
sions, which we discuss in section ii in connection with Example 2. We indicate why
upper and lower previsions do not resolve Savage’s challenge, either.
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YOU about the region S is that it belongs to the algebra B. Then
the Yi form an iid sequence of Bernoulli(q) variables, where q is
the area(S)/2p. As it happens, q 5 2/p. But this identity is sup-
pressed in the following analysis, with which both YOU and the
Stooge concur.

YOU and the Stooge know that ∑n
i51Yi is Binomial(n ,q). Let_

Yn 5∑n
i51Yi=n denote the sample average of the Yi.

_
Yn is a sufficient

statistic for q, that is, a summary of the n draws Xi that preserves all
the relevant evidence in a coherent inference about q based on the
data of the n -many iid Bernoulli(q) draws.

The Stooge samples with n 5 1016, obtains
_
Yn 5 0.63661977236,

and carries out ordinary Bayesian reasoning with YOU about the
Binomial parameter q using YOUR “prior” for q. According to what
the Stooge tells YOU, q is an uncertain Bernoulli quantity of no spe-
cial origins. YOU tell the Stooge your “prior” opinion about q. For con-
venience, suppose that YOU use a uniform conjugate Beta(1, 1)
“prior” distribution for q, denoted here as P(q). So, the Stooge reports,
given these data, YOUR “posterior” probability is greater than .999,
that 0.63661971 £ q £ 0.63661990. Then, since the Stooge knows that
q 5 2/p, the Stooge reports for YOU that the probability is at least
.999 that the sixth digit of p is 2. Of course, in order for YOU to reach
this conclusion you have to suppress the information that S is an
inscribed square within C, rather than some arbitrary geometric
region within the algebra of ruler-and-compass constructions. The
Stooge needs this particular information, of course, in order to deter-
mine the value of each Yi .àExample

This technique, strategy (1), generalizes to include the use of
many familiar numerical methods as a response to Savage’s ques-
tion: How do YOU express uncertainty about a mathematical term
t? The numerical method provides evidence in the form of a
random variable, Y, whose value Y 5 y is determined by an experi-
ment with a well-defined likelihood function, P(Y5y | q), that
depends upon a parameter q, known to the Stooge but not to
YOU to equal the problematic quantity t. YOU express a coherent
“prior” probability for q, P(q). By Bayes’s Theorem, YOUR “pos-
terior” probability, P(q | Y5y) is proportional to the product of
this likelihood and “prior”:

P(q | Y5y) µ P(Y5y | q) P(q).

As Good notes, playing fast and loose with the Total Evidence
principle—in the example, by permitting the Stooge to suppress the
problematic information that q 5 t—allows YOU, a coherent
Bayesian statistician, to duplicate some otherwise non-Bayesian,
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Classical statistical inferences. For instance, a Classical a-level
Confidence Interval for a quantity q based on a random vari-
able X, CIalower(X ) £ q £ CIaupper(X ) becomes a Bayesian posterior
probability a for the same interval estimate of q given X, by sup-
pressing the observed value of the random variable, X 5 x, and
leaving to the Stooge the responsibility of filling in that detail.

What troubles us about this approach as a response to Savage’s
challenge is that YOUR coherent uncertainty about the substitute
parameter q may reflect very little of what YOU know about the
problematic quantity t. Employing the Stooge, as above, allows YOU
to express a coherent prior probability for q. In Example 1, q is
the ratio: area of some arbitrary rule-and-compass region chosen
(by the Stooge) from B divided by 2p, t 5 2/p, and, unknown to
YOU, q 5 t. But YOUR prior for q, when that quantity is identified
to YOU as just some region chosen by the Stooge, may have very little
in common with YOUR uncertainty about t, which depends upon
the problematic information that S is the inscribed square and
which the Stooge conveniently suppresses for YOU.

ii. strategy (2)

In this section we examine an instance of strategy (2)—modify the
closure conditions on the space of uncertain events in order to avoid
requiring YOU are logically/mathematically omniscient. Hacking
(1967) responds to Savage’s challenge this way. Here, we review
de Finetti’s (1974) theory of coherent Previsions: P(·) as an instance
of this strategy.

In de Finetti’s theory, YOU are required to offer a fair price, a
prevision P(X ), for buying and selling the random variable X. X is
defined for/by YOU with respect to a partition W. That is, for each
state w Î W, X(w) is a well-defined real number. That is, the func-
tion X:W→Â is known to YOU. (In connection with the Dutch Book
argument, de Finetti often refers to YOU as the Bookie.) To say that
P(X ) is YOUR fair price for the random quantity X means that YOU
are willing to accept all contracts of the form bX,P(X )[X − P(X )], where
an opponent (called the Gambler) chooses a real-value, bX,P(X ). This
term, bX,P(X ), is constrained in magnitude in order to conform to
YOUR wealth, but allowed to depend on both the variable X and
YOUR prevision for X. With |b| > 0 small enough to fit YOUR budget,
YOU are willing to engage in the following contracts:

when b > 0 YOU agree to pay bP(X ) in order to buy (that is, to receive)
bX in return;

when b < 0 YOU agree to accept bP(X ) in order to sell (that is, to pay)
bX in return.
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For finitely many contracts YOUR outcome is the sum of the sepa-
rate contracts.

∑n
i¼1bi [X i (w)� P (X i )]:

In de Finetti’s theory, the state space W 5 fwg is formed by taking all
the mathematical combinations of those random variables c 5 fXg
that YOU have assessed with YOUR previsions. We illustrate this tech-
nique in Example 2, below.

Definition. YOUR Previsions are collectively incoherent provided that
there is a finite combination of acceptable contracts with uniformly
negative outcome—if there exists a finite set fbig (i 51, …, n) and
e > 0 such that, for each w ÎW,

∑n
i¼1bi [Xi (w)� P (Xi )] < �e:

With this choice of fbig the Gambler has created a sure loss for
YOU—a Dutch Book. Otherwise, if no such combination fbig exists,
YOUR previsions are coherent.

Let c 5 fXj : j Î J g be an arbitrary set of variables, defined on W.
What are the requirements that coherence imposes on YOU for
giving coherent previsions to each random quantity in the set c?
That is, suppose YOU provide previsions for each of the variables
X in a set c where each variable X is defined with respect to W,
that is, the function X : W→Â is well defined for each X. When
are these a coherent set of previsions?

De Finetti’s Theorem of Coherent Previsions :10

YOUR Previsions are coherent if and only if there is a (finitely
additive) probability P(·) on W with YOUR Previsions equal to their
P-expected values.

P(X ) 5 EP[X].

This theorem yields the familiar result that, when all the variables
in c are indicator functions—when all of the initial gambles are
simple bets on events—YOUR previsions are immune to the Gambler
having a strategy for making a Book against you if and only if your
previsions are a (finitely additive) probability.

10 de Finetti, Probabilismo: Saggio critico sulla teoria della probabilità e sul valore della
scienza (Naples, Italy: Perrella, 1931), translated as “Probabilism: A Critical Essay on
the Theory of Probability and on the Value of Science,” Erkenntnis, xxi, 2/3 (Septem-
ber 1989): 169–223; and de Finetti, “La prévision: ses lois logiques, ses sources sub-
jectives,” Annales de L’Institut Henri Poincaré, vii (1937): 1–68, translated as (and with
new notes by the author) “Foresight: Its Logical Laws, Its Subjective Sources,” in
Henry E. Kyburg, Jr., and Howard E. Smokler, eds., Studies in Subjective Probability,
2nd ed. (Huntington, NY: Krieger, 1980).
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De Finetti’s theory of coherent previsions commits YOU to having
precise previsions for all variables in the linear span—for all linear
combinations—of those variables X Î c that you have already
assessed with previsions. As we explain, below, this is a different
closure condition than requiring YOU to have previsions determined
even for all events in the smallest logic/algebra generated by W.

Again, suppose YOU provide coherent previsions for all variables
X in the set c. Let Y be another variable defined with respect to W
but not necessarily in c.

Let: A 5 fX : X(w) £ Y(w) and X is in the linear span of χg
A 5 fX : X(w) ³ Y(w) and X is in the linear span of χg

Let: P(Y ) 5 supX ÎA P(X ) and P(Y ) 5 infX ÎA P(X ).

De Finetti’s Fundamental Theorem of Previsions:
Extending YOUR previsions P to P * in order to give a coherent pre-

vision for Y, P *(Y ), allows it to be any (finite) number from P(Y ) to P(Y ).
Outside this interval, the extension P * is incoherent.

Next we illustrate these two results of de Finetti and explain their
relevance to Savage’s challenge.

Example 2. Consider a roll of a six-sided die with faces numbered
in the usual way, 1, 2, 3, 4, 5, 6, and with opposite sides always sum-
ming to 7. Suppose YOU think about the following four events
(which define the set c) and identify YOUR Previsions in accord
with the assessment that the die is fair :

P (f1g) 5 1/6; P(f3,6g) 5 1/3; P(f1,2,3g) 5 P(f1,2,4g) 5 ½.

The set of events for which YOUR coherent prevision is already
determined by the previsions for these four events is given by
the Fundamental Theorem. That set does not form an algebra. Only
24 of 64 events (only 12 pairs of complementary events) have deter-
minate previsions.

For instance, by the Fundamental Theorem:

P (f6g) 5 0 < P (f6g) 5 1/3;
likewise P (f4g) 5 0 < P (f4g) 5 1/3;
however, P (f4,6g) 5 1/3.

The smallest algebra for the four events in c is the power set of
all 64 subsets of W. Thus, de Finetti’s theory of coherence does not
require that YOUR previsions are well defined for all the proposi-
tions in the elementary logic formed from YOUR beliefs about the
constituents. YOU do not have to close the set of YOUR previsions
under even sentential logical operations. For instance, YOU are not
required to provide a well-defined prevision for an event that is
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the intersection of two events each of which you have assessed with
well-defined previsions. In Example 2, YOU give determinate previ-
sions P(f3,6g) and P (f1,2,3g), but are not required by coherence
to assess P(f3g). Alas, however, this approach through de Finetti’s
Fundamental Theorem does not solve YOUR question of how to
depict uncertainty about mathematical/logical constants.àExample

Example 3. For convenience, label the four events in c: F1 5 f1g,
F2 5 f3,6g, F3 5 f1,2,3g, and F4 5 f1,2,4g. Consider the following
specific sentential proposition, H, about which we presume YOU
are unsure of its validity—until, that is, you calculate truth tables.

H : [(F2Ú[F1Ù(F4ÚF3)]) → [(F2ÚF1)Ù(F2ÚF4)]]

Analogous to the variable Xp6, the sixth decimal digit in p, the
indicator variable IH is a constant: it takes the value 1 for each state
in W. 1 5 IW £ IH. So, by the Fundamental Theorem, in order to be
coherent YOUR prevision must satisfy P(IH) 5 1. Assume that,
prior to a truth-table calculation, YOU are unsure about H. Alas,
de Finetti’s theory of coherent previsions leaves YOU no room
to express this uncertainty. The closure of coherent previsions
required by the linear span of the random variables that YOU have
coherently assessed does not match the psychological closure of your
reasoning process.

Here is the same problem viewed from another perspective.
Example 3 (continued). Garber (1983) suggests YOU consider the

sentential form of the problematic hypothesis as a way of relaxing
the structural requirements of logical omniscience.

H : [(F2Ú[F1Ù(F4ÚF3)]) → [(F2ÚF1)Ù(F2ÚF4)]]

This produces the schema:

H′: [PÚ(QÙ(RÚS))] → [(PÚQ)Ù(PÚR )]

Evidently H′ is neither a tautology nor a contradiction. So, each
value 0 £ P(H) £ 1 is a coherent prevision, provided that we have
the full set of truth-value interpretations for the sentential variables
P, Q, R , and S.àExample

The replacement of H by H ignores the underlying mathematical
relations among the variables in H. Suppose that YOU assess YOUR
prevision for H, P(H ) 5 .6. Does YOUR psychological state of uncer-
tainty about H match the requirements that coherence places on a
prevision, P(H ) 5 .6? Do YOU identify H′ as the correct variable
for what you are thinking about when you are reflecting on YOUR
uncertainty about H, before you do the calculations that reveal H
is a logical constant? We think the answer is “No.”
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The same problem recurs when, instead of imposing the norms
merely of a sentential logic, as in Garber’s suggestion, we follow
Gaifman’s (2004) intriguing proposal for reasoning with limited
resources. Gaifman offers YOU a (possibly finite) collection P of
sentences over which you express your degrees of belief. As Gaifman
indicates, in his approach sentences are the formal stand-ins for
Fregean thoughts—“senses of sentences,” as he puts it (2004, p. 102).
This allows YOU to hold different degrees of uncertainty about two
thoughts provided that they have different senses. In Gaifman’s pro-
gram, YOUR opinions about sentences in P are governed by a
restricted logic. He allows for a local algebra of sentences that are
provably equivalent in a restricted logic. Then YOUR assessments
for the elements of P might not respect logical equivalence, as
needed in order to escape the clutches of logical omniscience. Just
as with de Finetti’s rule of closure under the linear span of assessed
events, also in Gaifman’s system of a local algebra YOU are not
required to assess arbitrary well-formed subformulas of those in P.

We are unsure just how Gaifman’s approach responds to Savage’s
challenge. First, as a practical matter, we do not understand what
YOUR previsions for such sentences entail when previsions are used
as betting rates. When YOU bet on a sentence s (in a local algebra),
what are the payoffs associated with such a bet? That is, how does a
local algebra fix the payoffs when YOU bet on s with prevision P(s)? It
cannot be that the truth conditions for s determine the payoffs for
the bet. That way requires YOU to be logically omniscient if you
are coherent, of course.

Second, and more to the point of Savage’s challenge, we do not
see why YOUR uncertainty about mathematical propositions should
match the normative constraints of an algebra closed under some
finite number of iterations of a given rule of inference. Why should
YOUR uncertainty over mathematical propositions match what is
provable in a restricted local algebra of the kind sketched by Gaifman?
Might it not be that YOU recall the seventh digit of p but not the
sixth? Then, mimicking YOUR uncertainty about the digits of p with
a restricted deductive system that generates the digits of p in a proof,
according to a computation of p, will not capture YOUR uncertainty
about p.

In Levi’s terms,11 YOUR commitments to having coherent (precise)
previsions according to de Finetti’s norms of coherence do not
match YOUR performance when assessing YOUR uncertainty about

11 Isaac Levi, The Fixation of Belief and Its Undoing: Changing Beliefs Through Inquiry
(New York: Cambridge, 1991).
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mathematical propositions. Nor does YOUR performance match
the norms of a sentential logic, as per Garber’s proposal. Nor does
YOUR performance match the norms of a local algebra, as per
Gaifman’s proposal. What reason makes plausible the view that
YOUR thinking about a mathematical proposition, your actual
performance when judging the value of Xp6, matches the commit-
ments of any such normative theory? We are doubtful of strategy (2)!

iii. strategy (3)

One feature common to strategies (1) and (2) is the goal of showing
that YOU are coherent when you hold nonextreme personal proba-
bilities for mathematical propositions.

Strategy (1) allows YOU to replace a problematic mathematical
variable, for example, Xp6, one that is constant across the space of
all possibilities (W), with another random variable q that is not
problematic in the same way. Numerical methods for computing
the problematic variable, Xp6, then can be modeled as ordinary
statistical experiments generating data Y about q. There is no
incoherence when YOU use nonextreme personal probabilities
for q, given Y. But, as we saw, in addition to failure to adhere to
the Total Evidence principle, the effectiveness of strategy (1) depends
upon YOUR willingness to use your prior probability for q to express
your thinking about Xp6.

Strategy (2) allows YOU to replace the familiar algebra B of a mea-
sure space with some other mathematical structure that can support
a different set of coherent personal probability assessments—a set
that is less demanding on YOUR logical reasoning abilities. For
de Finetti, that other mathematical structure is the linear span
formed by those previsions you are willing to make. For Garber it
is the structure of a sentential logic. For Gaifman it is a local algebra.
Though each of these might capture some aspect of YOUR think-
ing about a mathematical proposition, why should YOU think
according to the norms of any one of these alternative mathemati-
cal structures? None of them is intended as a realistic psychological
theory of how YOUR mind reasons.

We propose, instead, strategy (3): Concede that, regarding uncer-
tainty about mathematical and logical propositions, despite the
phenomenological similarities with uncertainty about nonconstant
“empirical” variables, nonextreme previsions for mathematical propo-
sitions are incoherent. This is exactly what Savage points out is the
problem with the theory of Personal Probability.

That is, we concede that YOUR commitment to being coherent is not discharged
by what is an entirely predictable shortfall in YOUR performance.
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However, the problem is exacerbated by the fact that de Finetti’s dis-
tinction between coherent and incoherent previsions is dichotomous.
Perhaps a more nuanced theory of incoherence can guide incoherent
thinkers on how to reason without abandoning their commitment to
coherence? That is the core idea for strategy (3).

In several of our papers we develop a theory of degrees of incoher-
ence.12 When the Gambler can make a Book against the Bookie ’s
incoherent previsions, then many Books can be made. The dif-
ferent Books may be compared by scaling the (minimum) sure gain
to the Gambler—or equivalently scaling the minimum sure loss
to the Bookie, or adopting a Neutral index, which incorporates
both perspectives.

Here are three indices that may be used to scale the sure gains/
losses in a Book. For simplicity, in the following discussion we scale
the finite set of gambles in a Book using the sum of the individually
scaled gambles. This is a special case of our general theory.

Rate of Loss ( for the Bookie) : Scale the minimum sure loss to the Bookie
by the total amount the Bookie is compelled to wager from the
Gambler ’s strategy.

What proportion of the Bookie ’s budget can the Gambler win for sure?

Rate of Profit ( for the Gambler) : Scale the sure gain to the Gambler by the
total amount used in the Gambler ’s strategy.

What proportion of the Gambler ’s stake does the Gambler have to
escrow to win one unit for sure from the Bookie?

A Neutral Rate : Scale the sure loss to the Bookie by the combined amounts
(the total stake) wagered by both players according the Gambler ’s strategy.

As we explain in our (2003) paper, this index is better designed
than either of the first two for assessing incoherent previsions for
constants. With the Neutral Rate, if Xc(w) 5 c is a constant variable
and P(Xc) is a prevision for Xc , then the degree of incoherence for
this one prevision is |c − P(Xc)|.

Relative to each of these indices, the rate of incoherence for an
incoherent Bookie ’s previsions is the greatest (scaled) loss/gain that
the Gambler can achieve across the different strategies for making
a Book.

Example 4: Illustrating Differences among These Three Rates of Inco-
herence. Consider a 3-element state space, W 5 fw1, w2, w3g. Let
c 5 fIi: i 5 1, 2, 3g be the set of the three indicator functions for

12 For an overview, see Schervish, Seidenfeld, and Kadane, op. cit.
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the three elements of W. And let the following be three incoherent
prevision functions over c.

P1(wi) 5 P1(Ii) 5 <0.5, 0.5, 0.5>, for i 5 1, 2, 3.
P2(wi) 5 P2(Ii) 5 <0.6, 0.7, 0.2>, for i 5 1, 2, 3.

and P3(wi) 5 P3(Ii) 5 <0.6, 0.8, 0.1>, for i 5 1, 2, 3.

With prevision Pj(·), j 5 1, 2, or 3, each contract of the form
ai(Ii – Pj(wi)) is judged fair. In all three cases ( j 5 1, 2, 3), Pj(w1) 1
Pj(w2) 1 Pj(w3) 5 1.5, and not 5 1. Clearly, these are incoherent
previsions. For the first incoherent prevision, P1(·), all three rates of
incoherence lead the Gambler to the same strategy, bet against the
incoherent Bookie1 with equal stakes on all three states, ai 5 (1, 1, 1).
For the second incoherent prevision, P2(·), both the Rate of Loss
and the Neutral Rate are maximized with the Gambler using the
equal-stakes strategy, ai 5 (1, 1, 1). But the Rate of Profit against
incoherent Bookie2 is maximized with the strategy ai 5 (1, 1, 0), that
is, gamble only on the first two states, and with equal stakes. For the
third incoherent prevision, P3(·), the Rate of Loss is maximized
against Bookie3 with the Gambler ’s strategy of equal stakes on all three
states, ai 5 (1, 1, 1), whereas the other two rates of incoherence are
maximized with the other strategy ai 5 (1, 1, 0).àExample

Thus, the three rates lead the Gambler to three different combi-
nations of strategies. These are different ways to index a rate of
incoherence. Of course, each coherent prevision has a 0-rate of incoher-
ence with each index.

We first developed our ideas about rates of incoherence in order
to engage familiar debates about Bayesian versus Classical Statistical
procedures. Bayesians argue that where a particular Classical proce-
dure is incoherent, therefore it is unacceptable. But this is a coarse-
level analysis. We inquire, instead, how incoherent is the Classical
procedure. Since Classical statistical procedures are often simple
to calculate, they can be warranted in the special case when the
rate of incoherence is small and a rival, full Bayesian analysis is
computationally infeasible. We provide an illustration of this analy-
sis in our (2000), where we investigate the rate of incoherence of
fixed a-level hypothesis tests regardless of sample size.13

How do we propose to use our ideas about rates of incoher-
ence to address Savage’s challenge of how to use probabilities
to formalize uncertainty about mathematical propositions? In
the spirit of de Finetti’s Fundamental Theorem, the following result,

13 Schervish, Seidenfeld, and Kadane, “A Rate of Incoherence Applied to Fixed-
Level Testing,” Philosophy of Science, lxix, S3 (September 2000): S248–64.
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reported in section 6 of our (2003), explains how to calculate a
prevision for a new variable without increasing YOUR existing rate
of incoherence.

Assume YOU assess previsions for each element of a (finite) par-
tition p 5 fh1, … , hmg, with values P(hi) 5 pi, i 5 1, …, m. YOU
are asked for YOUR prevision P(Y ) for a (p-measurable) variable Y,
with Y(hi) 5 ci .

• Calculate a pseudo-expectation using YOUR possibly incoherent
previsions over p: P(Y ) 5 ∑i pici

• Then you will not increase YOUR Rate of Incoherence extending your
previsions to include the new one for Y, P(Y ) 5 ∑i pici

When YOU are coherent, YOUR rate of incoherence is 0. Then
pseudo-expectations are expectations, and the only way to extend
YOUR previsions for a new variable, while preserving YOUR cur-
rent 0-rate of incoherence, is to use the pseudo-expectation algo-
rithm. However, when YOU are incoherent, there are other options
for assessing P(Y ) without increasing YOUR rate of incoherence.
But, without knowing how incoherent YOU are, still YOU can safely
use the pseudo-expectation algorithm and be assured that your rate
of incoherence does not increase. The pseudo-expectation algorithm
is robust !

One intriguing case of this result arises when Y is the variable
corresponding to a called-off (conditional) gamble.14 Then using a
pseudo-expectation with respect to YOUR (possibly) incoherent
previsions for Y suggests how to extend the principle of confirma-
tional conditionalization15 to include incoherent conditional previ-
sions. When YOU hypothesize expanding your corpus of knowledge
to include the new evidence (X 5 x), YOUR possibly incoherent
previsions P(·) become P(· | X 5 x), as calculated according to
the Bayes algorithm for pseudo-expectations.

This leads to the following Corollary, which is an elementary
generalization of familiar results about the asymptotic behavior of
a coherent posterior probability function given a sequence of
identically, independently distributed (iid) variables.16

14We discuss this in section 6 of Schervish, Seidenfeld, and Kadane, “Two Measures
of Incoherence,” Technical Report #660, Department of Statistics, Carnegie Mellon
University (1997).

15 See Levi, The Enterprise of Knowledge: An Essay on Knowledge, Credal Probability, and
Chance (Cambridge: MIT, 1980).

16 See Savage, Foundations of Statistics, p. 141, Theorem 1, for the special case of
a finite parameter space, and Doob’s theorem, as reported by Schervish, Theory of
Statistics (New York, Springer-Verlag, 1995), T.7.78, p. 429, for the general version,
as used here.
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Corollary. Let Q be a finite-dimensional parameter space. Con-
sider a nonextreme, pseudo-prior density function p(q) > 0, which
may be incoherent. Suppose, however, that a pseudo-likelihood den-
sity function p(X 5 x | q) has a 0-rate of incoherence; that is, these
conditional probabilities are coherent. Suppose, also, they are dif-
ferent conditional probability functions for different values of q.
Let Xi(i 5 1, …) form a sequence of conditionally iid variables,
given q, according to p(X 5 x | q). Use the pseudo-Bayes-algorithm
to create a sequence of pseudo-posterior functions pn(q | X1, …, Xn),
n 5 1, ….

Then, almost surely with respect to the true state, q* Î Q, the
Neutral rate of incoherence for the pseudo-posterior converges to 0,
and that pseudo-posterior concentrates on q*.

Example 1 (concluded). Reconsider the version of Example 1 involv-
ing iid repeated sampling of the bivariate variable X, a point ran-
domly chosen from a circle C. S is a particular inscribed square. Let
Yi 5 1, if Xi Î S, and Yi 5 0, if Xi ÏS. Let q 5 2/p 5 P(Y51 | q).
Suppose YOU assign a smooth but incoherent pseudo-prior to q,
for example, use a Beta(1, 1) pseudo-prior. Then, given the sequence
Yn(n 5 1, …), by the Corollary, the sequence of YOUR pseudo-
posteriors, Pn(Q | Y1, …, Yn) converges (even uniformly) to 2/p. With
the Neutral Rate, if Xc(w) 5 c is a constant variable and P(Xc) is a
prevision for Xc , then the degree of incoherence for this one previ-
sion is |c – P(Xc)|. Therefore, almost surely, also the Neutral Rate
of incoherence in YOUR pseudo-posterior converges to 0.àExample

Thus, we see how to use data from familiar numerical methods,
methods that have well-defined, coherent likelihood functions—as
in the growing family of MCMC algorithms—to improve the rate
of incoherence in our previsions for mathematical propositions.

iv. summary

We have reviewed three strategies for addressing the question whether
probability theory can be used to formalize personal uncertainty about
ordinary mathematical propositions. We posed the problem in the
following form. Variable Xc is a mathematical/logical constant that
YOU are unable to identify. So, according to the theory of Personal
Probability YOUR nonextreme prevision for Xc is incoherent.

(1) Relax the Total Evidence requirement, for example, use I. J. Good’s
Statistician’s Stooge, in order to substitute a related variable q, about
which ordinary statistical inference is coherent, for the problematic
variable Xc. With the Stooge ’s help in censuring some empirical
information (for example, Xc 5 q), you can reason coherently about
q. It is the Stooge who converts those conclusions into incoherent
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previsions about Xc. But how to match q against what we are think-
ing about Xc? What exactly is our Stooge reporting to us about q?

(2) Relax the structure of a measure space in order to accommodate
a more psychologically congenial closure condition on the set
of variables to be assessed (Hacking, 1967). What fits the bill?
De Finetti’s use of the linear span in place of an algebra of events
does not work. Nor does either Garber’s proposal to use senten-
tial logic, or Gaifman’s local algebra. We do not see how to match
YOUR coherent assessments, where you are aware of these, with
a domain of propositions defined by mathematical operations.
The mathematical operations used for “closing” the domain of
propositions form a Procrustean bed against the domain of YOUR
coherent assessments.

(3) Concede that nonextreme probabilities for mathematical proposi-
tions are incoherent. Then provide normative criteria for reason-
ing with incoherent previsions in order to show how to reduce
YOUR rate of incoherence. The dichotomy between coherent/
incoherent assessments appears too coarse to explain how we
use, for example, numerical methods to improve our thinking
about mathematical quantities. With our approach to Savage’s chal-
lenge, using the machinery of rates of incoherence, we expand
an old Pragmatist idea—one that runs from Peirce through Dewey.
We illustrate how to make the operation of a numerical calcula-
tion into an experiment whose outcome may be analyzed using
familiar principles of statistical inference. Here, we have taken a
few, tentative steps in this direction.

We do not know, however, how far our approach goes in addressing
the scope of Savage’s challenge. For example, a commonplace deci-
sion for a mathematician unsure about a specific mathematical con-
jecture is how to apportion her/his efforts between searching for
a proof of the conjecture and searching for a counterexample to
the same conjecture. In sections 14.14–14.15 of his (1970), dealing
with search problems, DeGroot establishes Bayesian algorithms for
optimizing sequential search.17 Can these algorithms be adapted
to the mathematician’s decision problem by allowing for some
incoherence in her/his assessments about the conjecture? Are the
algorithms DeGroot proves optimal also with pseudo-expectations?
We take this as a worthy conjecture.

teddy seidenfeld
mark j. schervish
joseph b. kadane

Carnegie Mellon University

17Morris H. DeGroot, Optimal Statistical Decisions (New York: McGraw-Hill, 1970).
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